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Abstract: We show that statistical and semi-Weyl structures with torsion are invariant under conformal-projective
transformations. We prove that a nondegenerate submanifold of a semi-Weyl (respectively, statistical) manifold with
torsion is also a semi-Weyl (respectively, statistical) manifold with torsion, and that the induced structures of two
conformal-projective equivalent semi-Weyl (respectively, statistical) structures with torsion on a manifold to a nonde-
generate submanifold, are conformal-projective equivalent, too. Also, we prove that the umbilical points of a nonde-
generate hypersurface in a semi-Weyl manifold with torsion are preserved by conformal-projective changes. Then we
consider lightlike hypersurfaces of semi-Weyl manifolds with torsion and we describe similarities and differences with
respect to the nondegenerate hypersurfaces. Finally, we show that a semi-Weyl manifold with torsion can be realized by
a nondegenerate affine distribution.

Key words: Statistical structure, semi-Weyl structure, dual and semidual connections, conformal-projective transfor-
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1. Introduction
Statistical structures play a central role in information geometry. They are defined as pairs of a torsion-free
affine connection and a pseudo-Riemannian metric satisfying the Codazzi equation. Later on, this notion was
extended to statistical structures with torsion. Generalizing both these concepts, semi-Weyl structures with
torsion, introduced in [3], make a deeper connection to affine differential geometry. Moreover, conformal and
projective transformations are the most important transformations in the theory of affine connections, crucial
in conformal and projective geometry.

Having these in mind, the aim of the present paper is to present some properties of semi-Weyl structures
with torsion, with a special view towards these kinds of transformations. Precisely, we prove their invariance
under conformal-projective transformations and that the induced structure of two conformal-projective equiva-
lent semi-Weyl structures with torsion on a pseudo-Riemannian manifold to a pseudo-Riemannian submanifold,
are conformal-projective equivalent. Also, we show that a umbilical nondegenerate hypersurface in a semi-Weyl
manifold with torsion M is umbilical with respect to any conformal-projective equivalent structure on M .
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Then we focus on lightlike hypersurfaces of semi-Weyl manifolds with torsion and we describe similarities
and differences with respect to the nondegenerate hypersurfaces. Lightlike submanifolds are very interesting in
relativity and their use is growing up in mathematical physics. The main difference between the nondegenerate
and the lightlike hypersurfaces is that, in the last case, the normal vector bundle intersects the tangent bundle,
so a tangent vector cannot be decomposed uniquely into a tangent and a normal component to the submanifold.
In particular, the usual definition of the second fundamental form, Gauss and Weingarten formulas do not
work for the lightlike case. For details, we refer to the book [5]. In [2], lightlike hypersurfaces of a statistical
manifold are studied, and with this motivation in mind, we generalize some results obtained for nondegenerate
hypersurfaces to the case of lightlike hypersurfaces of a semi-Weyl manifold with torsion. In this situation,
we need to consider an integrable screen distribution of the lightlike hypersurface. In particular, we prove the
existence of the induced structure and the invariance under conformal-projective transformations. Finally, we
show that a semi-Weyl manifold with torsion can be realized by a nondegenerate affine distribution.

2. Statistical and semi-Weyl manifolds with torsion

Consider a pseudo-Riemannian manifold (M, g) . Throughout the whole paper, we will denote by TM the
tangent bundle of M , by T ∗M its cotangent bundle and by Γ∞(TM) (respectively, by Γ∞(T ∗M)) the smooth
sections of TM (respectively, of T ∗M ). For an arbitrary affine connection ∇ on M , we shall denote by T∇

its torsion tensor and by R∇ its curvature tensor, given, respectively, by

T∇(X,Y ) := ∇XY −∇YX − [X,Y ], R∇(X,Y ) := ∇X∇Y −∇Y∇X −∇[X,Y ],

for X,Y ∈ Γ∞(TM) , where [·, ·] is the Lie bracket on TM . An affine connection is said to be torsion-free if
its torsion tensor is zero, and flat, if its curvature tensor is zero.

Definition 2.1 [1] Let (M, g) be a pseudo-Riemannian manifold, and let ∇ be a torsion-free affine connection
on M . Then (M, g,∇) is called a statistical manifold (on short, SM ) if

(∇Xg)(Y, Z) = (∇Y g)(X,Z),

for any X,Y, Z ∈ Γ∞(TM) .

In 2007, Kurose introduced the notion of statistical manifold admitting torsion.

Definition 2.2 [8] Let (M, g) be a pseudo-Riemannian manifold and let ∇ be an affine connection on M with
torsion tensor T∇ . Then (M, g,∇) is called a statistical manifold admitting torsion (on short, SMT ) if

(∇Xg)(Y, Z) = (∇Y g)(X,Z)− g(T∇(X,Y ), Z),

for any X,Y, Z ∈ Γ∞(TM) .

Example 2.3 If g is a pseudo-Riemannian metric on M and f is a positive smooth function on M , then
(M, efg,∇g + df ⊗ I) is a SMT , where ∇g is the Levi-Civita connection of g .
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Definition 2.4 [1, 10] Let (M, g) be a pseudo-Riemannian manifold. Two affine connections ∇ and ∇∗ on
M are said to be dual connections with respect to g if

X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇∗
XZ),

for any X,Y, Z ∈ Γ∞(TM) , and we call (g,∇,∇∗) a dualistic structure on M .

As g is symmetric, from the definition, we remark that (∇∗)∗ = ∇ . Notice that ∇ = ∇∗ if and only if
∇ is a metric connection, that is, ∇g = 0 . Moreover, if ∇ is torsion-free, then ∇ = ∇∗ if and only if ∇ is the
Levi-Civita connection of g .

Also, a dualistic structure (g,∇,∇∗) on M such that ∇ and ∇∗ are flat and torsion-free is called a
dually flat structure on M (and (M, g,∇,∇∗) a dually flat manifold).

From [3], we state

Proposition 2.5 Let ∇ and ∇∗ be dual connections with respect to g . Then
(i) R∇ = 0 ⇔ R∇∗

= 0 ;

(ii) T∇∗
= 0 ⇔ (M, g,∇) is a SMT ;

(iii) T∇ = 0 ⇔ (M, g,∇∗) is a SMT .

Recently, we introduced the notion of semi-Weyl manifold admitting torsion.

Definition 2.6 [3] Let (M, g) be a pseudo-Riemannian manifold, let ∇ be an affine connection on M with
torsion tensor T∇ and let η be a 1-form. Then (M, g, η,∇) is called a semi-Weyl manifold admitting torsion
(on short, SWMT ) if

(∇Xg)(Y, Z) + η(X)g(Y, Z) = (∇Y g)(X,Z) + η(Y )g(X,Z)− g(T∇(X,Y ), Z),

for any X,Y, Z ∈ Γ∞(TM) .

Example 2.7 If (M, g,∇) is a statistical manifold and η is a nonzero 1-form on M , then (M, g, η,∇+η⊗ I)
is a SWMT .

Definition 2.8 [11, 12] Let (M, g) be a pseudo-Riemannian manifold and let η be a 1-form on M . Two
affine connections ∇ and ∇∗ on M are said to be semidual connections (or generalized dual connections) with
respect to (g, η) if

X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇∗
XZ)− η(X)g(Y, Z),

for any X,Y, Z ∈ Γ∞(TM) , and we call (g, η,∇,∇∗) a semidualistic structure on M .

From the definition, we remark that (∇∗)∗ = ∇ . Notice that if ∇ is torsion-free, then ∇ = ∇∗ if and
only if (M, g, η,∇) is a Weyl manifold.

Remark 2.9 If we denote by ∇∗
g the dual connection of ∇ with respect to g and by ∇∗

(g,η) the semidual

connection of ∇ with respect to (g, η) , then ∇∗
g = ∇∗

(g,η) − η ⊗ I and ∇ = (∇∗
(g,η))

∗
g + η ⊗ I .
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From [3], we state

Proposition 2.10 Let ∇ and ∇∗
(g,η) be semidual connections with respect to (g, η) and let ∇∗

g be the dual
connection of ∇ with respect to g . Then

(i) R∇ = 0 ⇔ R∇∗
(g,η) = 0 ⇔ R∇∗

g = 0 ;

(ii) T∇∗
(g,η) = 0 ⇔ (M, g, η,∇) is a SWMT ;

(iii) T∇ = 0 ⇔ (M, g, η,∇∗
(g,η)) is a SWMT ;

(iv) (M, g, η,∇∗
(g,η)) is a SWMT ⇔ (M, g,∇∗

g) is a SMT .

3. Conformal-projective transformations of SMT and SWMT

Let ∇ be an affine connection on the pseudo-Riemannian manifold (M, g) and consider the conformal-projective
transformation of (g,∇) :

g̃ := eφ+ψg, (3.1)

∇̃ := ∇+ dφ⊗ I + I ⊗ dφ− g ⊗∇ψ, (3.2)

for φ and ψ smooth functions on M , where ∇ψ denotes the gradient of ψ with respect to the metric g .
By direct computations, we obtain

Lemma 3.1

T ∇̃ = T∇,

(∇̃X g̃)(Y, Z)− (∇̃Y g̃)(X,Z) = eφ+ψ
(
(∇Xg)(Y, Z)− (∇Y g)(X,Z)

)
,

for any X,Y, Z ∈ Γ∞(TM) .

The invariance under conformal-projective transformations is stated in the next proposition.

Proposition 3.2 (i) (M, g, η,∇) is a SWMT if and only if (M, g̃, η, ∇̃) is a SWMT . Moreover, the semidual

connection ∇̃∗
(g̃,η) of ∇̃ with respect to (g̃, η) and the semidual connection ∇∗

(g,η) of ∇ with respect to (g, η)

satisfy

∇̃∗
(g̃,η) = ∇∗

(g,η) + dψ ⊗ I + I ⊗ dψ − g ⊗∇φ.

(ii) (M, g,∇) is a SMT if and only if (M, g̃, ∇̃) is a SMT . Moreover, the dual connection ∇̃∗
g̃ of ∇̃

with respect to g̃ and the dual connection ∇∗
g of ∇ with respect to g satisfy

∇̃∗
g̃ = ∇∗

g + dψ ⊗ I + I ⊗ dψ − g ⊗∇φ.

Proof The assertions follow from the definitions of the dual and semidual connections, (3.1) and (3.2).
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Proposition 3.3 The curvatures of (g,∇) and (g̃, ∇̃) satisfy

R̃(X,Y )Z = R(X,Y )Z + Z(φ)T∇(X,Y ) +
(
X(ψ)g(Y, Z)− Y (ψ)g(X,Z)

)
∇ψ −

(
(d∇g)(X,Y, Z)

)
∇ψ

+
(
X(Z(φ))− g(∇XZ,∇φ)−X(φ)Z(φ) + g(X,Z)g(∇φ,∇ψ)

)
Y

−
(
Y (Z(φ))− g(∇Y Z,∇φ)− Y (φ)Z(φ) + g(Y, Z)g(∇φ,∇ψ)

)
X

+ g(X,Z)∇Y∇ψ − g(Y, Z)∇X∇ψ,

R̃ic(Y, Z) = Ric(Y, Z) + Z(φ) trace(TY ) + g(Y, Z)
(
∥∇ψ∥2 −∆(∇,g)(ψ)− (n− 1)g(∇φ,∇ψ)

)
+ (n− 1)Y (φ)Z(φ)− Y (ψ)Z(ψ)− g(T∇(∇ψ, Y ), Z)

− (n− 1)
(
(∇Y g)(∇φ,Z) + g(∇Y∇φ,Z)

)
+ (∇Y g)(∇ψ,Z) + g(∇Y∇ψ,Z)− (∇∇ψg)(Y, Z),

s̃cal = e−(φ+ψ)
(
scal+ trace(T∇φ) + trace(T∇ψ)

)
+ (n− 1)e−(φ+ψ)

(
∥∇φ∥2 + ∥∇ψ∥2 −∆(∇,g)(φ)−∆(∇,g)(ψ)− ng(∇φ,∇ψ)

)
− e−(φ+ψ)

(
(n− 1) trace((∇g)(∇φ))− trace((∇g)(∇ψ)) + trace(∇∇ψg)

)
,

for any X,Y, Z ∈ Γ∞(TM) , where n = dim(M) , TY (X) := T∇(X,Y ) ,

(d∇g)(X,Y, Z) := (∇Xg)(Y, Z)− (∇Y g)(X,Z) + g(T∇(X,Y ), Z)

and

∆(∇,g)(φ) := div(∇,g)(∇φ) =
n∑
i=1

ϵig(∇Ei∇φ,Ei),

for {Ei}1≤i≤n a pseudo-orthonormal frame field with respect to g , g(Ei, Ej) = ϵiδij , ϵi = ±1 .

Proof We have:

∇̃X∇̃Y Z = ∇̃X

(
∇Y Z + dφ(Y )Z + dφ(Z)Y − g(Y, Z)∇ψ

)
= ∇̃X∇Y Z + Y (φ)∇̃XZ +X(Y (φ))Z + Z(φ)∇̃XY +X(Z(φ))Y − g(Y, Z)∇̃X∇ψ −X(g(Y, Z))∇ψ

= ∇X∇Y Z + dφ(X)∇Y Z + dφ(∇Y Z)X − g(X,∇Y Z)∇ψ

+ Y (φ)
(
∇XZ + dφ(X)Z + dφ(Z)X − g(X,Z)∇ψ

)
+X(Y (φ))Z

+ Z(φ)
(
∇XY + dφ(X)Y + dφ(Y )X − g(X,Y )∇ψ

)
+X(Z(φ))Y

− g(Y, Z)
(
∇X∇ψ + dφ(X)∇ψ + dφ(∇ψ)X − g(X,∇ψ)∇ψ

)
−X(g(Y, Z))∇ψ
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= ∇X∇Y Z +X(φ)∇Y Z + dφ(∇Y Z)X − g(X,∇Y Z)∇ψ

+ Y (φ)∇XZ +X(φ)Y (φ)Z + Y (φ)Z(φ)X − g(X,Z)Y (φ)∇ψ +X(Y (φ))Z

+ Z(φ)∇XY +X(φ)Z(φ)Y + Y (φ)Z(φ)X − g(X,Y )Z(φ)∇ψ +X(Z(φ))Y

− g(Y, Z)∇X∇ψ − g(Y, Z)X(φ)∇ψ − g(Y, Z)g(∇φ,∇ψ)X + g(Y, Z)X(ψ)∇ψ −X(g(Y, Z))∇ψ,

for any X,Y, Z ∈ Γ∞(TM) , and by replacing it in

R̃(X,Y )Z := ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z,

we get the first relation.

From (3.1) and (3.2), taking into account that if {Ẽi}1≤i≤n is a pseudo-orthonormal frame field with

respect to the pseudo-Riemannian metric g̃ , g̃(Ẽi, Ẽj) = ϵiδij , ϵi = ±1 , then {Ei := e
φ+ψ

2 Ẽi}1≤i≤n is a
pseudo-orthonormal frame field with respect to g , from the definition of the Ricci tensor field, we get:

R̃ic(Y, Z) :=

n∑
i=1

ϵig̃(R̃(Ẽi, Y )Z, Ẽi) =

n∑
i=1

ϵig(R̃(Ei, Y )Z,Ei)

=

n∑
i=1

ϵig(R(Ei, Y )Z,Ei) + Z(φ)

n∑
i=1

ϵig(T
∇(Ei, Y ), Ei)

+

n∑
i=1

ϵi

(
Ei(ψ)g(Y, Z)− Y (ψ)g(Ei, Z)− (∇Eig)(Y, Z) + (∇Y g)(Ei, Z)− g(T∇(Ei, Y ), Z)

)
g(∇ψ,Ei)

+

n∑
i=1

ϵi

(
Ei(Z(φ))− g(∇EiZ,∇φ)− Ei(φ)Z(φ) + g(Ei, Z)g(∇φ,∇ψ)

)
g(Y,Ei)

−
n∑
i=1

(
Y (Z(φ))− g(∇Y Z,∇φ)− Y (φ)Z(φ) + g(Y, Z)g(∇φ,∇ψ)

)
ϵig(Ei, Ei)

+

n∑
i=1

ϵig(Ei, Z)g(∇Y∇ψ,Ei)−
n∑
i=1

ϵig(Y, Z)g(∇Ei∇ψ,Ei)

= Ric(Y, Z) + Z(φ) trace(TY ) + g(Y, Z)
(
∥∇ψ∥2 −∆(∇,g)(ψ)− (n− 1)g(∇φ,∇ψ)

)
+ (n− 1)Y (φ)Z(φ)− Y (ψ)Z(ψ) + g(∇Y∇ψ,Z)− (∇∇ψg)(Y, Z) + (∇Y g)(∇ψ,Z)

− g(T∇(∇ψ, Y ), Z)− (n− 1)
(
(∇Y g)(∇φ,Z) + g(∇Y∇φ,Z)

)
.

6



BLAGA and NANNICINI/Turk J Math

Also:

s̃cal :=

n∑
i=1

ϵiR̃ic(Ẽi, Ẽi) = e−(φ+ψ)
n∑
i=1

ϵiR̃ic(Ei, Ei)

= e−(φ+ψ)
[ n∑
i=1

ϵiRic(Ei, Ei) +

n∑
i=1

ϵiEi(φ) trace(TEi) + n
(
∥∇ψ∥2 −∆(∇,g)(ψ)− (n− 1)g(∇φ,∇ψ)

)

+ (n− 1)

n∑
i=1

ϵiEi(φ)Ei(φ)−
n∑
i=1

ϵiEi(ψ)Ei(ψ)−
n∑
i=1

ϵig(T
∇(∇ψ,Ei), Ei)

− (n− 1)

n∑
i=1

ϵi

(
(∇Eig)(∇φ,Ei) + g(∇Ei∇φ,Ei)

)
+

n∑
i=1

ϵi

(
(∇Eig)(∇ψ,Ei) + g(∇Ei∇ψ,Ei)

)

−
n∑
i=1

ϵi(∇∇ψg)(Ei, Ei)
]

= e−(φ+ψ)
[
scal+ trace(T∇φ) + n

(
∥∇ψ∥2 −∆(∇,g)(ψ)− (n− 1)g(∇φ,∇ψ)

)
+ (n− 1)∥∇φ∥2 − ∥∇ψ∥2 + trace(T∇ψ)

− (n− 1) trace((∇g)(∇φ))− (n− 1)∆(∇,g)(φ) + trace((∇g)(∇ψ)) + ∆(∇,g)(ψ)− trace(∇∇ψg)
]

and we obtain the conclusions.
Now we can state

Proposition 3.4

R̃ic(Y, Z)− R̃ic(Z, Y ) = Ric(Y, Z)− Ric(Z, Y )

+ Z(φ) trace(TY )− Y (φ) trace(TZ)− g(T∇(∇ψ, Y ), Z) + g(T∇(∇ψ,Z), Y )

− (n− 1)
(
(∇Y g)(Z,∇φ)− (∇Zg)(Y,∇φ) + g(∇Y∇φ,Z)− g(∇Z∇φ, Y )

)
+ (∇Y g)(Z,∇ψ)− (∇Zg)(Y,∇ψ) + g(∇Y∇ψ,Z)− g(∇Z∇ψ, Y ),

for any Y, Z ∈ Γ∞(TM) .

Remark 3.5 For any smooth function f on M , we remark that

(∇Y g)(Z,∇f)− (∇Zg)(Y,∇f) = Y (Z(f))− Z(Y (f))− g(∇Y Z −∇ZY,∇f) + g(Y,∇Z∇f)− g(Z,∇Y∇f)

= [Y, Z](f)− g(T∇(Y, Z),∇f)− g([Y, Z],∇f) + g(Y,∇Z∇f)− g(Z,∇Y∇f)

= −g(T∇(Y, Z),∇f) + g(Y,∇Z∇f)− g(Z,∇Y∇f),

for any Y, Z ∈ Γ∞(TM) .

Therefore, by means of Remark 3.5, Proposition 3.4 can be restated as

7
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Proposition 3.6

R̃ic(Y, Z)− R̃ic(Z, Y ) = Ric(Y, Z)− Ric(Z, Y ) + Z(φ) trace(TY )− Y (φ) trace(TZ)

+ (n− 1)g(T∇(Y, Z),∇φ)− g(T∇(Y, Z),∇ψ)− g(T∇(Z,∇ψ), Y )− g(T∇(∇ψ, Y ), Z),

for any Y, Z ∈ Γ∞(TM) .

Remark 3.7 From Remark 3.5, we also deduce that:
(i) if (M, g, η,∇) is a SWMT , then

g(∇Y∇f, Z)− g(∇Z∇f, Y ) = η(Y )Z(f)− η(Z)Y (f),

for any Y, Z ∈ Γ∞(TM) ;
(ii) if (M, g,∇) is a SMT , then

g(∇Y∇f, Z) = g(∇Z∇f, Y ),

for any Y, Z ∈ Γ∞(TM) .

From Proposition 3.3, for φ = 0 , we get

Corollary 3.8 If g̃ := eψg and ∇̃ := ∇− g ⊗∇ψ , then

R̃(X,Y )Z = R(X,Y )Z +
(
X(ψ)g(Y, Z)− Y (ψ)g(X,Z)

)
∇ψ

−
(
(∇Xg)(Y, Z)− (∇Y g)(X,Z) + g(T∇(X,Y ), Z)

)
∇ψ + g(X,Z)∇Y∇ψ − g(Y, Z)∇X∇ψ,

R̃ic(Y, Z) = Ric(Y, Z) + g(Y, Z)
(
∥∇ψ∥2 −∆(∇,g)(ψ)

)
− Y (ψ)Z(ψ)

− g(T∇(∇ψ, Y ), Z) + (∇Y g)(∇ψ,Z) + g(∇Y∇ψ,Z)− (∇∇ψg)(Y, Z),

s̃cal = e−ψ
[
scal+ trace(T∇ψ)− trace(∇∇ψg) + trace((∇g)(∇ψ)) + (n− 1)

(
∥∇ψ∥2 −∆(∇,g)(ψ)

)]
,

for any X,Y, Z ∈ Γ∞(TM) .

In this case, Proposition 3.6 becomes

Corollary 3.9 If g̃ := eψg and ∇̃ := ∇− g ⊗∇ψ , then

R̃ic(Y, Z)− R̃ic(Z, Y ) = Ric(Y, Z)− Ric(Z, Y )− g(T∇(Y, Z),∇ψ)− g(T∇(Z,∇ψ), Y )− g(T∇(∇ψ, Y ), Z),

for any Y, Z ∈ Γ∞(TM) .

Corollary 3.10 Let g̃ := eψg , ∇̃ := ∇− g ⊗∇ψ and let η be a 1-form on M . If (M, g, η,∇) is a SWMT

(or a SMT ), then

R̃ic(Y, Z)− R̃ic(Z, Y ) = Ric(Y, Z)− Ric(Z, Y ),

for any Y, Z ∈ Γ∞(TM) .
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Proof From Corollary 3.8, we have:

R̃(X,Y )Z = R(X,Y )Z +
(
X(ψ)g(Y, Z)− Y (ψ)g(X,Z)

)
∇ψ

−
(
η(Y )g(X,Z)− η(X)g(Y, Z)

)
∇ψ + g(X,Z)∇Y∇ψ − g(Y, Z)∇X∇ψ,

which by taking the trace, gives

R̃ic(Y, Z) = Ric(Y, Z) + g(Y, Z)
(
∥∇ψ∥2 −∆(∇,g)(ψ) + η(∇ψ)

)
−

(
Y (ψ) + η(Y )

)
Z(ψ) + g(∇Y∇ψ,Z)

and by using Remark 3.7, we find

R̃ic(Y, Z)− R̃ic(Z, Y ) = Ric(Y, Z)− Ric(Z, Y )

− η(Y )Z(ψ) + η(Z)Y (ψ) + g(∇Y∇ψ,Z)− g(∇Z∇ψ, Y ) = Ric(Y, Z)− Ric(Z, Y ).

Also:
s̃cal = e−ψ

[
scal+(n− 1)

(
∥∇ψ∥2 −∆(∇,g)(ψ) + η(∇ψ)

)]
.

For η = 0 , we get the corresponding relations for SMT .
From Corollaries 3.9 and 3.10, we deduce

Corollary 3.11 Let g̃ := eψg , ∇̃ := ∇− g ⊗∇ψ and let η be a 1-form on M . If (M, g, η,∇) is a SWMT

(or a SMT ), then
g(T∇(Y, Z),∇ψ) + g(T∇(Z,∇ψ), Y ) + g(T∇(∇ψ, Y ), Z) = 0,

for any Y, Z ∈ Γ∞(TM) .

Definition 3.12 [9] A pair (g,∇) of an affine connection and a pseudo-Riemannian metric on M is said to

be a conformally flat structure if there exists a smooth function ψ such that the connection ∇̃ := ∇− g ⊗∇ψ
is flat in a neighborhood of any point of M .

Thus, from Corollaries 3.8 and 3.9, we can state

Corollary 3.13 (i) If (M, g,∇) is a SWMT such that (g,∇) is a conformally flat structure on M with

∇̃ := ∇− g ⊗∇ψ flat in a neighborhood of any point, then, for any X,Y, Z ∈ Γ∞(TM) , we get

R(X,Y )Z = −
(
X(ψ)g(Y, Z)− Y (ψ)g(X,Z)

)
∇ψ − g(X,Z)∇Y∇ψ + g(Y, Z)∇X∇ψ

+
(
η(Y )g(X,Z)− η(X)g(Y, Z)

)
∇ψ,

Ric(Y, Z) = −g(Y, Z)
(
∥∇ψ∥2 −∆(∇,g)(ψ) + η(∇ψ)

)
+
(
Y (ψ) + η(Y )

)
Z(ψ)− g(∇Y∇ψ,Z)

scal = −(n− 1)
(
∥∇ψ∥2 −∆(∇,g)(ψ) + η(∇ψ)

)
.

In particular, the Ricci tensor field of ∇ is symmetric.
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(ii) If (M, g,∇) is a SMT such that (g,∇) is a conformally flat structure on M with ∇̃ := ∇− g⊗∇ψ
flat in a neighborhood of any point, then, for any X,Y, Z ∈ Γ∞(TM) , we get

R(X,Y )Z = −
(
X(ψ)g(Y, Z)− Y (ψ)g(X,Z)

)
∇ψ − g(X,Z)∇Y∇ψ + g(Y, Z)∇X∇ψ,

Ric(Y, Z) = −g(Y, Z)
(
∥∇ψ∥2 −∆(∇,g)(ψ)

)
+ Y (ψ)Z(ψ)− g(∇Y∇ψ,Z),

scal = −(n− 1)
(
∥∇ψ∥2 −∆(∇,g)(ψ)

)
.

In particular, the Ricci tensor field of ∇ is symmetric.

We end this section by providing a way to construct lots of examples of conformal-projective transforma-
tions on statistical and semi-Weyl manifolds. It is known that nontrivial examples of statistical manifolds are
given by locally convex hypersurfaces in Rn+1 and by Hessian manifolds. We recall here the definition.

Let M be a locally convex hypersurface in Rn+1 and let g , h , be respectively the first and the second
fundamental forms of M . Then h is a Riemannian metric on M and the Codazzi equation

(∇Xh)(Y, Z) = (∇Y h)(X,Z)

holds for any X,Y, Z ∈ Γ∞(TM) , where ∇ is the Levi-Civita connection of g and, (M,h,∇) is a statistical
manifold.

Now, let (M,∇) be an affine manifold, i.e. a smooth manifold M provided with a flat, torsion-free,
affine connection ∇ . A Riemannian metric g on M is said to be a Hessian metric if g is locally expressed
by a Hessian g = ∇2f , where f is a locally smooth function on M . Then the pair (g,∇) is called a Hessian
structure and (M, g,∇) is called a Hessian manifold, and, it is known that [4] a Hessian manifold is a statistical
manifold.

We consider M a locally convex hypersurface of Rn+1 with the statistical structure (h,∇) given by the
second fundamental form, and a Hessian manifold with the statistical structure (g,∇) defined before. Let φ
and ψ be smooth functions on M . Then h̃ = eφ+ψh , respectively, g̃ = eφ+ψg , and ∇̃ = ∇+ dφ⊗ I − h⊗∇ψ ,
respectively, ∇̃ = ∇+ dφ⊗ I − g ⊗∇ψ , is a conformal-projective transformation of (M,h,∇) , respectively, of
(M, g,∇) .

Now, starting from the examples of statistical manifolds M given by locally convex hypersurfaces in
Rn+1 and Hessian manifolds, as described in Example 2.7, given a nonzero 1 -form on M , we can define semi-
Weyl manifolds with torsion and, as before, conformal-projective transformations on them. In this way we can
produce lots of examples of conformal-projective transformations on statistical and semi-Weyl manifolds with
torsion.

4. Pseudo-Riemannian submanifolds of SMT and SWMT

Let (M, g) be an n -dimensional pseudo-Riemannian manifold.

Definition 4.1 A smooth submanifold M ′ of M is called a pseudo-Riemannian submanifold, or nondegenerate
submanifold, of (M, g) if the induced tensor g′ := g|TM ′×TM ′ is a pseudo-Riemannian metric on M ′ .

10
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Let M ′ be a pseudo-Riemannian submanifold of (M, g) . Then the tangent space of M , at any point
x ∈M ′ , can be orthogonally decomposed, with respect to g , into the orthogonal sum

TxM = TxM
′ ⊥ T⊥

x M
′.

We shall prove that a pseudo-Riemannian submanifold M ′ of a SWMT (respectively, SMT ) M is also
a SWMT (respectively, SMT ) with the induced structure and that the conformal-projective equivalence of
two such structures is preserved for the induced structures on the submanifold.

Proposition 4.2 If M ′ is a pseudo-Riemannian submanifold of a SWMT (M, g, η,∇) , then (M ′, g′, η′,∇′)

is also a SWMT , where η′ and g′ are the induced tensors on M ′ and ∇′
XY , X,Y ∈ Γ∞(TM ′) , is the

component of ∇XY tangent to M ′ . In this case, we call (g′, η′,∇′) the induced structure by (g, η,∇) on M ′ .
Moreover, the semidual connection (∇′)∗ of the induced connection ∇′ with respect to (g′, η′) is the induced
connection (∇∗)′ of the semidual connection ∇∗ of ∇ with respect to (g, η) .

Proof Just remark that

T∇(X + U, Y + V ) = T∇(X,Y ) + T∇(X,V ) + T∇(U, Y ) + T∇(U, V ),

for any X,Y ∈ Γ∞(TM ′) and U, V ∈ Γ∞(T⊥M ′) , hence

g(T∇(X,Y ), Z) = g′(T∇′
(X,Y ), Z),

for any X,Y, Z ∈ Γ∞(TM ′) . Also

(∇′
Xg

′)(Y, Z) := X(g′(Y, Z))− g′(∇′
XY, Z)− g′(Y,∇′

XZ)

= X(g(Y, Z))− g(∇XY, Z)− g(Y,∇XZ) := (∇Xg)(Y, Z),

for any X,Y, Z ∈ Γ∞(TM ′) , hence

(∇′
Xg

′)(Y, Z)− (∇′
Y g

′)(X,Z) = (∇Xg)(Y, Z)− (∇Y g)(X,Z)

= η(Y )g(X,Z)− η(X)g(Y, Z)− g(T∇(X,Y ), Z)

= η′(Y )g′(X,Z)− η′(X)g′(Y, Z)− g′(T∇′
(X,Y ), Z)

and we get the first statement.
Moreover, we remark that

X(g′(Y, Z)) = X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇∗
XZ)− η(X)g(Y, Z)

= g′(∇′
XY, Z) + g′(Y, (∇∗)′XZ)− η′(X)g′(Y, Z),

for any X,Y, Z ∈ Γ∞(TM ′) , hence the conclusion is true.

We recall the following.

Definition 4.3 A smooth hypersurface M ′ of M is called a lightlike hypersurface of (M, g) if the induced
tensor g′ := g|TM ′×TM ′ is degenerate.

11
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Remark 4.4 We remark that Proposition 4.2 is not true for smooth submanifolds which are not pseudo-
Riemannian submanifolds, for example it is not true for lightlike hypersurfaces [2].

Proposition 4.5 Let M ′ be an m-dimensional pseudo-Riemannian submanifold of an n-dimensional pseudo-
Riemannian manifold (M, g) . If (M, g, η,∇) and (M, g̃, η, ∇̃) are conformal-projective equivalent SWMT ,

then the induced structures on M ′ , (g′, η′,∇′) and (g̃′, η′, ∇̃′) , are conformal-projective equivalent, too.

Proof Obviously, the induced metrics g′ and g̃′ on M ′ are conformal equivalent, namely,

g̃′ = eφ
′+ψ′

g′,

where φ′ and ψ′ denote the restrictions of φ and ψ to M ′ , respectively.
Let X,Y ∈ Γ∞(TM ′) . Then

∇̃′
XY + (∇̃XY )⊥ = ∇̃XY = ∇XY + dφ(X)Y + dφ(Y )X − g(X,Y )∇ψ

= ∇′
XY + (∇XY )⊥ + dφ′(X)Y + dφ′(Y )X − g′(X,Y )∇′ψ′ − g′(X,Y )

n∑
i=m+1

ϵig(∇ψ,Ni)Ni,

where {Ni}m+1≤i≤n is a pseudo-orthonormal frame field on T⊥M ′ , ϵi = ±1 . By identifying the tangential
components, we infer

∇̃′
XY = ∇′

XY + dφ′(X)Y + dφ′(Y )X − g′(X,Y )∇′ψ′,

hence the conclusion is true.

Let (M ′, g′, η′,∇′) be a nondegenerate hypersurface of a SWMT (M, g, η,∇) , with the induced struc-
ture, and denote by N the unit normal vector field with respect to g , g(N,N) = ϵ = ±1 . Then

∇XY = ∇′
XY + α(X,Y )N, ∇XN = −B(X) + τ(X)N,

∇∗
XY = (∇′)∗XY + α∗(X,Y )N, ∇∗

XN = −B∗(X) + τ∗(X)N,

where

α(X,Y ) := ϵg(∇XY,N), τ(X) := ϵg(∇XN,N),

α∗(X,Y ) := ϵg(∇∗
XY,N), τ∗(X) := ϵg(∇∗

XN,N),

and we define

β(X,Y ) := g(B(X), Y ) = −g(∇XN,Y ),

β∗(X,Y ) := g(B∗(X), Y ) = −g(∇∗
XN,Y ),

for any X,Y ∈ Γ∞(TM ′) .

Proposition 4.6 Let (M ′, g′, η′,∇′) be a nondegenerate hypersurface of a SWMT (M, g, η,∇) , with the
induced structure. Then the (0, 2)-tensor field β (defined on M ′ ) is symmetric. Moreover, (ϵα, β) = (β∗, ϵα∗) .

12
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Proof We have

β(X,Y )− β(Y,X) = −g(∇XN,Y ) + g(∇YN,X)

= −
(
X(g(N,Y ))− g(N,∇∗

XY ) + η(X)g(N,Y )
)

+
(
Y (g(N,X))− g(N,∇∗

YX) + η(Y )g(N,X)
)

= g(N,∇∗
XY )− g(N,∇∗

YX) = −g(N,T∇∗
(X,Y )),

for any X,Y ∈ Γ∞(TM ′) , where ∇∗ is the semidual connection of ∇ with respect to (g, η) . In particular, the
first statement follows from Proposition 2.10.

Moreover
β(X,Y ) = g(N,∇∗

XY ) = ϵα∗(X,Y ),

hence
(ϵα, β) = (β∗, ϵα∗).

We pose the following.

Definition 4.7 A point x of a pseudo-Riemannian hypersurface M ′ in a SWMT (M, g, η,∇) is called a
umbilical point if there exists a real constant c such that βx = cg′x . Moreover, M ′ is said to be a umbilical
hypersurface of M if there exists a smooth function f on M ′ such that β = fg′ .

Now we can prove the following.

Proposition 4.8 The umbilical points of a pseudo-Riemannian hypersurface in a SWMT , with the induced
structure, are preserved by conformal-projective changes.

Proof Let M ′ be a nondegenerate hypersurface of a SWMT (M, g, η,∇) and let (g′, η′,∇′) be the induced

structure on M ′ . We remark that the unit normal vector field Ñ with respect to g̃ equals to Ñ = e−
φ+ψ

2 N .
Then, for any X,Y ∈ Γ∞(TM) , we have

β̃(X,Y ) = −g̃(∇̃XÑ , Y ) = −e
φ+ψ

2 g(∇XN + dφ(X)N + dφ(N)X − g(X,N)∇ψ, Y )− eφ+ψX(e−
φ+ψ

2 )g(N,Y )

= −e
φ+ψ

2

(
g(∇XN,Y ) + dφ(N)g(X,Y )

)
= e

φ+ψ
2

(
β(X,Y )− dφ(N)g′(X,Y )

)
,

hence
β̃ = e

φ+ψ
2 (β − dφ(N)g′)

and we immediately get the conclusions.

As a consequence, we obtain

Corollary 4.9 Let M ′ be a m-dimensional pseudo-Riemannian submanifold of a n-dimensional pseudo-
Riemannian manifold (M, g) . If (M, g, η,∇) and (M, g̃, η, ∇̃) are conformal-projective equivalent SWMT

and M ′ is a umbilical hypersurface of (M, g, η,∇) , then M ′ is a umbilical hypersurface of (M, g̃, η, ∇̃) , too.

13
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Proposition 4.10 Let (M, g,∇) be a pseudo-Riemannian manifold with an affine connection, and let (M ′, g′,∇′)

be a nondegenerate hypersurface with the induced structure. Then the Riemann curvatures of (g,∇) and (g′,∇′)

satisfy

R∇(X,Y )Z = R∇′
(X,Y )Z −

(
α(Y, Z)B(X)− α(X,Z)B(Y )

)
+
(
(∇′

Xα)(Y, Z) + α(Y, Z)τ(X)− (∇′
Y α)(X,Z)− α(X,Z)τ(Y ) + α(T∇′

(X,Y ), Z)
)
N,

for any X,Y, Z ∈ Γ∞(TM ′) .

Proof We have:
∇X∇Y Z = ∇X(∇′

Y Z + α(Y, Z)N) = ∇X∇′
Y Z + α(Y, Z)∇XN +X(α(Y, Z))N

= ∇′
X∇′

Y Z + α(X,∇′
Y Z)N + α(Y, Z)(−B(X) + τ(X)N) +X(α(Y, Z))N

= ∇′
X∇′

Y Z + α(X,∇′
Y Z)N − α(Y, Z)B(X) + α(Y, Z)τ(X)N

+ ((∇′
Xα)(Y, Z) + α(∇′

XY, Z) + α(Y,∇′
XZ))N,

for any X,Y, Z ∈ Γ∞(TM ′) , and by replacing it in

R∇(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

we get the relation.

Proposition 4.11 Let M ′ be a nondegenerate hypersurface of a SWMT (M, g, η,∇) with the induced structure
(g′, η′,∇′) . If M ′ is umbilical with β = fg′ , for f a smooth function on M ′ and R∇∗

(X,Y )Z = 0 , for any
X,Y, Z ∈ Γ∞(TM ′) , then

R(∇′)∗(X,Y )Z = ϵf
(
g′(Y, Z)B∗(X)− g′(X,Z)B∗(Y )

)
, df + f(τ∗ − η′) = 0.

Proof Replacing the semidual connection ∇∗ of ∇ with respect to (g, η) and ϵβ∗ to ∇ and α , respectively,
in Proposition 4.10, taking into account that

(∇′
Xβ)(Y, Z) = X(f)g′(Y, Z) + f(∇′

Xg
′)(Y, Z),

and since T∇∗
= 0 , we infer

R∇∗
(X,Y )Z = R(∇′)∗(X,Y )Z − ϵ

(
fg′(Y, Z)B∗(X)− fg′(X,Z)B∗(Y )

)
+ ϵ

(
X(f)g′(Y, Z) + f(∇′

Xg
′)(Y, Z) + fg′(Y, Z)τ∗(X)

− Y (f)g′(X,Z)− f(∇′
Y g

′)(X,Z)− fg′(X,Z)τ∗(Y )
)
N

= R(∇′)∗(X,Y )Z − ϵf
(
g′(Y, Z)B∗(X)− g′(X,Z)B∗(Y )

)
+ ϵ

(
(df + fτ∗ − fη′)(X)g′(Y, Z)− (df + fτ∗ − fη′)(Y )g′(X,Z)

)
N,

for any X,Y, Z ∈ Γ∞(TM ′) , which implies the conclusion.

14



BLAGA and NANNICINI/Turk J Math

5. Lightlike hypersurfaces of SMT and SWMT

In this section we describe some details concerning the geometry of lightlike hypersurfaces of SMT and SWMT .

Let (M, g) be an (n + 2) -dimensional pseudo-Riemannian manifold with the index of negativity of g

greater than 0 and less than n+2 . If (M ′, g′) is a lightlike hypersurface of (M, g) , then there exists a non zero
ζ ∈ Γ∞(TM ′) such that g′(ζ,X) = 0 , for any X ∈ Γ∞(TM ′) . Let Rad(TM ′) be the distribution (of rank 1),
called the radical distribution, defined by:

Rad(TM ′) := {ζ ∈ Γ∞(TM ′) : g′(ζ,X) = 0, for any X ∈ Γ∞(TM ′)}.

Let S(TM ′) be a complementary vector bundle of Rad(TM ′) in TM ′ , called a screen distribution. Then we
have that TM ′ decomposes into an orthogonal sum

TM ′ = S(TM ′)⊥Rad(TM ′).

In particular, S(TM ′) is a nondegenerate distribution and we have

TM|M ′ = S(TM ′)⊥(S(TM ′))⊥,

where (S(TM ′))⊥ is the orthogonal complement of S(TM ′) in TM|M ′ .
The following fact is known.

Theorem 5.1 [5] Let (M ′, g′, S(TM ′)) be a lightlike hypersurface of a pseudo-Riemannian manifold (M, g) .
Then, there exists a unique vector bundle tr(TM ′) of rank 1 over M ′ , such that, on any coordinate neighborhood
U ⊂M ′ , there exists a unique N ∈ Γ∞(tr(TM ′)|U ) satisfying:

g(N, ξ) = 1, g(N,N) = g(N,W ) = 0, for any W ∈ Γ∞(S(TM ′)|U ),

where {ξ} is a local basis for Γ∞(Rad(TM ′)|U ) . In this case, tr(TM ′) is called the lightlike transversal vector
bundle of M ′ with respect to S(TM ′) .

Hence we have the following

TM|M ′ = S(TM ′)⊥((T⊥M ′)⊕ tr(TM ′))

= S(TM ′)⊥(Rad(TM ′)⊕ tr(TM ′)) = TM ′ ⊕ tr(TM ′).

Now let us suppose that (M, g, η,∇) is a SWMT and let (M ′, g′) be a lightlike hypersurface. Locally,
on a coordinate neighborhood U ⊂M ′ , we have Gauss and Weingarten formulas:

∇XY = ∇′
XY + α(X,Y )N, ∇XN = −B(X) + τ(X)N,

for any X,Y ∈ Γ∞(TM ′
|U ) , where ∇′ represents the induced connection on M ′ , ∇′

XY ∈ Γ∞(TM ′
|U ) , α is the

second fundamental form, B is the Weingarten operator and τ(X) = g(∇XN, ξ) .
The following result generalizes Proposition 4.2 to screen bundle and generalizes the analogous result for

lightlike submanifolds of a statistical manifold given in [2].
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Proposition 5.2 Let (M ′, g′) be a lightlike hypersurface of a SWMT (M, g, η,∇) such that the screen
distribution S(TM ′) is integrable. Then (g′, η′, ∇̄) is a semi-Weyl structure with torsion on S(TM ′) , where η′

is the induced 1-form and ∇̄ is the induced connection on sections of the screen distribution.

Proof By using the previous notations, let P be the projection of Γ∞(TM ′) on Γ∞(S(TM ′)) . For
X ∈ Γ∞(TM ′) , we can write

X = PX + γ(X)ξ,

where γ is a 1 -form given by
γ(X) := g(X,N).

We have:
∇PXPY = ∇̄PXPY + h(PX,PY ),

for any X,Y ∈ Γ∞(TM ′) , where h is the second fundamental form of S(TM ′) in TM . Hence

(∇̄PXg
′)(PY, PZ) = (PX)(g(PY, PZ))− g(∇PXPY, PZ)− g(PY,∇PXPZ) = (∇PXg)(PY, PZ),

for any X,Y, Z ∈ Γ∞(TM ′) . Moreover, the torsion of ∇̄ ,

T ∇̄(X,Y ) := ∇̄XY − ∇̄YX − [X,Y ],

satisfies

g′(T ∇̄(PX,PY ), PZ) = g(∇̄PXPY − ∇̄PY PX − [PX,PY ], PZ) = g(T∇(PX,PY ), PZ).

Then

(∇̄PXg
′)(PY, PZ) + η(PX)g′(PY, PZ)− (∇̄PY g

′)(PX,PZ)− η(PY )g′(PX,PZ)− g′(T ∇̄(PX,PY ), PZ)

= (∇PXg)(PY, PZ) + η(PX)g(PY, PZ)− (∇PY g)(PX,PZ)

− η(PY )g(PX,PZ)− g(T∇(PX,PY ), PZ) = 0

and the proof is complete.

Remark 5.3 We remark that if the screen distribution is not integrable, then the bracket is not well defined and
the torsion on S(TM ′) is not well defined. Regarding conditions on the integrability of a screen distribution,
we refer to [6].

Proposition 5.4 Let M ′ be a lightlike hypersurface of a pseudo-Riemannian manifold (M, g) , such that the

screen distribution S(TM ′) is integrable. If (M, g, η,∇) and (M, g̃, η, ∇̃) are conformal-projective equivalent

SWMT , then the induced structures on S(TM ′) , (g′, η′, ∇̄) and (g̃′, η′,
¯̃∇) , are conformal-projective equivalent,

too.

Proof Let g′ and g̃′ be the induced metrics on M ′ . Obviously, the radical distributions with respect to g′

and g̃′ are the same, since
g̃′ = eφ

′+ψ′
g′,
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where φ′ and ψ′ denote the restrictions of φ and ψ to M ′ , respectively.
Let X,Y ∈ Γ∞(S(TM ′)) . Then

¯̃∇XY + α̃(X,Y )Ñ = ∇̃XY = ∇XY + dφ(X)Y + dφ(Y )X − g(X,Y )∇ψ

= ∇̄XY + α(X,Y )N + dφ′(X)Y + dφ′(Y )X − g′(X,Y )∇̄ψ′ − g′(X,Y )g(∇ψ,N)N,

where N is the defined before section of the lightlike transversal vector bundle of M ′ with respect to

(S(TM ′), g′) and Ñ = e−
φ+ψ

2 N . By identifying the tangential components, we infer

¯̃∇XY = ∇̄XY + dφ′(X)Y + dφ′(Y )X − g′(X,Y )∇̄ψ′,

hence the conclusion is true.
Let M ′ be a lightlike hypersurface of a pseudo-Riemannian manifold (M, g) , such that the screen

distribution S(TM ′) is integrable. Let (g, η,∇) be a semi-Weyl structure with torsion on M and let (g′, η′, ∇̄)

be the induced semi-Weyl structure with torsion on S(TM ′) . Let

∇XY = ∇̄XY + α(X,Y )N, ∇XN = −B(X) + τ(X)N,

where α(X,Y ) := g(∇XY,N) , τ(X) := g(∇XN,N) . Moreover, let ∇∗ be the semidual connection of ∇ with
respect to (g, η) . Then

∇∗
XY = (∇̄)∗XY + α∗(X,Y )N, ∇∗

XN = −B∗(X) + τ∗(X)N,

where α∗(X,Y ) := g(∇∗
XY,N) , τ∗(X) := g(∇∗

XN,N) , and we define

β(X,Y ) := g(B(X), Y ) = −g(∇XN,Y ),

β∗(X,Y ) := g(B∗(X), Y ) = −g(∇∗
XN,Y ),

for any X,Y ∈ Γ∞(S(TM ′)) .

Proposition 5.5 Let (M ′, g′, η′, ∇̄) be a lightlike hypersurface of a SWMT (M, g, η,∇) , with the induced
structure, such that the screen distribution S(TM ′) is integrable. Then the (0, 2)-tensor field β (defined on
S(TM ′)) is symmetric. Moreover, (α, β) = (β∗, α∗) .

Proof We have

β(X,Y )− β(Y,X) = −g(∇XN,Y ) + g(∇YN,X)

= −
(
X(g(N,Y ))− g(N,∇∗

XY ) + η(X)g(N,Y )
)

+
(
Y (g(N,X))− g(N,∇∗

YX) + η(Y )g(N,X)
)

= g(N,∇∗
XY )− g(N,∇∗

YX) = −g(N,T∇∗
(X,Y ) + [X,Y ]) = −g(N,T∇∗

(X,Y )),

for any X,Y ∈ Γ∞(S(TM ′)) , where ∇∗ is the semi-dual connection of ∇ with respect to (g, η) . In particular,
the first statement follows from Proposition 2.10.
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Moreover
β(X,Y ) = g(N,∇∗

XY ) = α∗(X,Y ),

hence
(α, β) = (β∗, α∗).

Now we can prove the following.

Proposition 5.6 The umbilical points of a lightlike hypersurface M ′ , with an integrable screen distribution
S(TM ′) , in a SWMT , with the induced structure, are preserved by conformal-projective changes.

Proof Let M ′ be a lightlike hypersurface, with an integrable screen distribution S(TM ′) , of a SWMT

(M, g, η,∇) and let (g′, η′, ∇̄) be the induced structure on S(TM ′) . Remark that the unit normal vector field

Ñ with respect to g̃ equals to Ñ = e−
φ+ψ

2 N . Then, for any X,Y ∈ Γ∞(TM) , we have

β̃(X,Y ) = −g̃(∇̃XÑ , Y ) = −e
φ+ψ

2 g(∇XN + dφ(X)N + dφ(N)X − g(X,N)∇ψ, Y )− eφ+ψX(e−
φ+ψ

2 )g(N,Y )

= −e
φ+ψ

2

(
g(∇XN,Y ) + dφ(N)g(X,Y )

)
= e

φ+ψ
2

(
β(X,Y )− dφ(N)g′(X,Y )

)
,

hence
β̃ = e

φ+ψ
2 (β − dφ(N)g′)

and we immediately get the conclusions.
Let us also remark that the previous result does not depend on the SWMT structure.

As a consequence, we obtain

Corollary 5.7 Let M ′ be a lightlike hypersurface of a pseudo-Riemannian manifold (M, g) , such that the screen

distribution S(TM ′) is integrable. If (M, g, η,∇) and (M, g̃, η, ∇̃) are conformal-projective equivalent SWMT

and (M ′, S(TM ′)) is a umbilical lightlike hypersurface of (M, g, η,∇) , then (M ′, S(TM ′)) is a umbilical lightlike

hypersurface of (M, g̃, η, ∇̃) , too.

6. Nondegenerate affine distributions
We will prove that a SWMT can be realized by a nondegenerate affine distribution. Remark that Haba proved
in [7] that a SMT manifold can be realized by a nondegenerate equiaffine distribution. We shall follow the
natural idea for this construction.

Let {ω, ξ} be an affine distribution on the n -dimensional manifold M , i.e.ω is an Rn+1 -valued 1 -form
on M and ξ is an Rn+1 -valued function on M , such that

Rn+1 = Im(ωx)⊕ Rξx,

for any x ∈M .
Moreover, we suppose

Im(dωx) ⊂ Im(ωx),
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for any x ∈M .
We define the SWMT (M, g, η,∇) in the following way. For any X,Y ∈ Γ∞(TM) , set

Xω(Y ) = ω(∇XY ) + g(X,Y )ξ, Xξ = −ω(B(X)) + η(X)ξ,

hence, ∇ satisfies the properties of an affine connection, g of a symmetric (0, 2) -tensor field, η of a 1 -form
(and B is a (1, 1) -tensor field).

Theorem 6.1 If {ω, ξ} is a nondegenerate affine distribution on M , then (M, g, η,∇) is a SWMT and the
curvature tensor of ∇ has the following expression:

R∇(X,Y )Z = g(Y, Z)B(X)− g(X,Z)B(Y ),

for any X,Y, Z ∈ Γ∞(TM) .

Proof We have:
X(g(Y, Z)ξ) = X(g(Y, Z))ξ + g(Y, Z)(−ω(B(X)) + η(X)ξ)

hence
((∇Xg)(Y, Z))ξ = X(g(Y, Z))ξ − g(∇XY, Z)ξ − g(Y,∇XZ)ξ

= X(g(Y, Z)ξ)− g(Y, Z)(−ω(B(X)) + η(X)ξ)− g(∇XY, Z)ξ − g(Y,∇XZ)ξ

= X(Y ω(Z)− ω(∇Y Z)) + g(Y, Z)ω(B(X))− g(Y, Z)η(X)ξ − g(∇XY, Z)ξ − g(Y,∇XZ)ξ

= XY ω(Z)−Xω(∇Y Z) + g(Y, Z)ω(B(X))−
(
g(Y, Z)η(X) + g(∇XY, Z) + g(Y,∇XZ)

)
ξ

and(
(∇Xg)(Y, Z)− (∇Y g)(X,Z)

)
ξ =

(
g(X,Z)η(Y )− g(Y, Z)η(X)− g(Z,∇XY ) + g(Z,∇YX) + g([X,Y ], Z)

)
ξ

+ ω(∇Y∇XZ −∇X∇Y Z −∇[X,Y ]Z + g(Y, Z)B(X)− g(X,Z)B(Y ))

thus
(∇Xg)(Y, Z)− (∇Y g)(X,Z) + η(X)g(Y, Z)− η(Y )g(X,Z) + g(T∇(X,Y ), Z) = 0

and
R∇(X,Y )Z = g(Y, Z)B(X)− g(X,Z)B(Y ),

for any X,Y, Z ∈ Γ∞(TM) . Then the proof is complete.
Direct computations give the following.

Corollary 6.2 If {ω, ξ} is a nondegenerate affine distribution on M , then the SWMT (M, g, η,∇) has the
following Ricci and scalar curvature:

Ric(Y, Z) = g(Y, Z)

n∑
i=1

ϵig(B(Ei), Ei)−
n∑
i=1

ϵig(Ei, Z)g(B(Y ), Ei),

scal = (n− 1)

n∑
i=1

ϵig(B(Ei), Ei),

for any Y, Z ∈ Γ∞(TM) , where {Ei}1≤i≤n is a pseudo-orthonormal frame field with respect to the pseudo-
Riemannian metric g , g(Ei, Ej) = ϵiδij , ϵi = ±1 .
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Corollary 6.3 If {ω, ξ} is a nondegenerate affine distribution on M , then the SWMT (M, g, η,∇) has
symmetric Ricci tensor if and only if

ϵig(B(Ej), Ei) = ϵjg(B(Ei), Ej),

for any 1 ≤ i, j ≤ n . Hence, if B = cI , where c is a smooth function on M , then the Ricci tensor is symmetric.
In this case, the scalar curvature is given by

scal = c(n− 1)(ip − in),

where ip (respectively, in ) is the positivity index (respectively, the negativity index) of g . In particular, if g is
a neutral metric, that is, ip = in , then the scalar curvature is zero.

Remark that, for a smooth function ψ on M , the transformation ξ ⇝ ξ̃ , where

ξ̃ := e−ψ
(
ω(∇ψ) + ξ

)
gives rise to

g̃ = eψg, η̃ = η, ∇̃ = ∇− g ⊗∇ψ. (6.1)

Moreover
B̃(X) = e−ψ

(
B(X)−∇X∇ψ +X(ψ)∇ψ + η(X)∇ψ

)
.

From Proposition 3.2 (taking φ = 0), we can state

Proposition 6.4 If {ω, ξ} is a nondegenerate affine distribution on M , then (M, g̃, η, ∇̃) given by (6.1) is a
SWMT .

Also, for a smooth function ψ on M , the transformation ξ ⇝ ξ̃ , where

ξ̃ := ω(∇ψ) + e−ψξ

gives rise to
g̃ = eψg, η̃ = η + (eψ − 1)dψ, ∇̃ = ∇− eψg ⊗∇ψ. (6.2)

Moreover
B̃(X) = e−ψB(X)−∇X∇ψ + (eψ − 1)X(ψ)∇ψ + η(X)∇ψ.

By direct computations, we obtain

Lemma 6.5 For any X,Y, Z ∈ Γ∞(TM) , we have

T ∇̃ = T∇, (∇̃X g̃)(Y, Z)− (∇̃Y g̃)(X,Z) = eψ
(
(∇Xg)(Y, Z) + dψ(X)g(Y, Z)− (∇Y g)(X,Z)− dψ(Y )g(X,Z)

)
.

Thus we can state

Proposition 6.6 If {ω, ξ} is a nondegenerate affine distribution on M , then (M, g̃, η̃ − eψdψ, ∇̃) given by
(6.2) is a SWMT .

20



BLAGA and NANNICINI/Turk J Math

Proof For any X,Y, Z ∈ Γ∞(TM) , we get from Lemma 6.5

(∇̃X g̃)(Y, Z) +
(
η̃(X)− eψdψ(X)

)
g̃(Y, Z)− (∇̃Y g̃)(X,Z)−

(
η̃(Y )− eψdψ(Y )

)
g̃(X,Z)

= eψ
(
(∇Xg)(Y, Z) + η(X)g(Y, Z)− (∇Y g)(X,Z)− η(Y )g(X,Z)

)
= eψg(T∇(X,Y ), Z) = g̃(T ∇̃(X,Y ), Z),

hence the conclusion is true.
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